DOI: 10.1002/chem.200903503

Synthesis of Anatase TiO₂ Tubular Structures Microcrystallites with a High Percentage of {001} Facets by a Simple One-Step Hydrothermal Template Process

Xiaoning Wang,^[a] Baibiao Huang,^{*[a]} Zeyan Wang,^[a] Xiaoyan Qin,^[a] Xiaoyang Zhang,^[a] Ying Dai,^[b] and Myung-Hwan Whangbo^[c]

Since the discovery of carbon nanotubes in 1991,^[1] tubular structures have received much attention.^[2-4] Owing to their special structures and outstanding mechanical/electrical properties, tubular structures have been widely used for the fabrication of microfluidics and optical devices, biomedical instruments, chemical microreactors, and composite materials.^[5-12] So far, various tubular structures have been produced by using vapor phase deposition, lamella structure scroll, template-assisted, metal-catalyst-assisted, and thermal solution methods.^[7,13-18] High-aspect-ratio TiO₂ nanotubular layers possess significantly stronger photocatalytic properties than nanoparticulate layers do.^[19] Thus, TiO₂ tubular materials are particularly interesting for their potential applications in photocatalysis and photovoltaic cells. TiO₂ crystals with {001} facets, which have a high surface energy and hence exhibit enhanced reactivity, are attractive as photocatalysts.^[20] Recently, a method to synthesize anatase TiO_2 single crystals with a high percentage of {001} facets has been developed,^[21] and has been used to prepare several morphologically different anatase TiO₂ materials with a high percentage of {001} facets and hence with high photocatalytic activities.^[22-24] So far, however, there has been no report on TiO_2 tubular materials exposing highly reactive $\{001\}$ facets. In this work, we report a simple one-step hydrothermal method for preparing anatase TiO₂ tubular structures made up of microscrystallites with a high percentage of

[a] X. Wang, Prof. Dr. B. Huang, Dr. Z. Wang, X. Qin, Prof. X. Zhang State Key Lab of Crystal Materials Shandong University, Jinan 250100 (China) Fax: (+86)531-8836-5969 E-mail: bbhuang@sdu.edu.cn
[b] Prof. Dr. Y. Dai School of Physics

InterScience[®]

Shandong University, Jinan 250100 (China)
[c] Prof. Dr. M.-H. Whangbo
Department of Chemistry, North Carolina State University Raleigh, North Carolina 27695-8204 (USA) {001} facets by using ZrO_2 fibers as a template. This process may provide a facile way to produce TiO_2 with special structures, which may have promising applications in photocatalysis and photoelectronics. Our analysis of the structures, morphologies, and growth procedures of the as-grown TiO_2 microtubes provides a plausible growth mechanism.

Figure 1 shows the XRD patterns of the as-grown samples obtained after hydrothermal processing at 200 °C with a ZrO_2 template for various reaction times *t*. The products obtained with t=6 h exhibit a mixed phase of anatase TiO₂ (JCPDS card 21-1272) and tetragonal ZrO₂ (JCPDS card 79-1764, Figure 1 b). The peaks corresponding to tetragonal ZrO₂ gradually decreases with increasing the reaction time *t*.

Figure 1. XRD patterns of a) the ZrO_2 template, b) the TiO₂ tubular structures obtained from hydrothermal processing at 200°C for t=6 h, and c) the TiO₂ tubular structures obtained from hydrothermal processing at 200°C for t=24 h. The inset shows the EDS of as-grown TiO₂ tubular structures obtained with t=24 h.

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2010, 16, 7106-7109

7106 -

When t=24 h, the tetragonal ZrO₂ phase completely disappears, and all the diffraction peaks of the as-grown samples can be indexed to pure anatase TiO₂ (Figure 1 c). This observation is further confirmed by the energy dispersive spectrum (EDS) of the as-grown TiO₂ tubular structures (see the inset of Figure 1); only Ti, O, and F atoms are detected from the as-grown TiO₂ samples with the [Ti]/[O] ratio of 1:2.35, which is close to the expected stoichiometry. The presence of F is attributed to the presence of (NH₄)TiF₆ in the hydro-thermal process.

Polycrystalline ZrO_2 fibers are long with smooth surfaces (Figure 2 a), whereas the as-grown TiO₂ tubular structures are short (70–150 µm) with rough surfaces (shown in Figure 2 b). The SEM images in Figure 3 show zoomed-in views

Figure 2. SEM images of a) ZrO_2 fibers and b) the as-grown TiO₂ tublar structures obtained from hydrothermal processing at 200 °C for 24 h.

of the open ends and the surfaces of the as-prepared TiO₂ tubular structures. The latter are composed of many TiO₂ microcrystals and have external diameters of about 10-15 µm and a wall thickness of approximately 3 µm. The high-magnification SEM image (Figure 3c) shows that the tubular structures consist of plate-shaped rectangular structures with side lengths of approximately 3 µm and thickness of approximately 1 µm. High-resolution transmission electron microscopy (HR-TEM) shows the (200) and (020) atomic planes with a lattice spacing of 0.19 nm (Figure 3d). The selected-area electron diffraction (SAED) patterns further confirm the single-crystalline characteristics, and the SAED pattern can be indexed as a (001) zone (insert of Figure 3 d). In contrast to the case of regular anatase TiO_2 crystals, which are usually dominated by the thermodynamically stable {101} facets,^[21] both {101} and {001} facets are clearly observed in the microcrystallites of as-prepared TiO₂ tubular structures. The appearance of highly reactive {001} facets, which is thermodynamically unstable due to its higher surface energy, is due most probably to the F⁻ ions generated during the hydrothermal procedure, because F⁻ ions are known to preferentially stabilize the (001) rather than the (101) surface.^[20,21] The existence of F in the EDS (the inset of Figure 1) indicates that some F atoms are adsorbed on the TiO_2 microcrystal surfaces, thereby stabilizing the {001} facets. Based on the SEM image of the rectangular TiO₂ microcrystals, the percentage of the highly reactive {001} facets is estimated to be approximately 46%.

The synthesis of TiO_2 tubular structures by the hydrothermal process can be explained in terms of two reactions

COMMUNICATION

Figure 3. SEM images of anatase TiO_2 tubular structures: a) The end of one tube, b) the surface of a tube, and c) the faces of microcrystals. d) HR-TEM images of a TiO_2 sheet (the inset shows the corresponding SAED patten).

shown in [Eq. (1)] and [Eq. (2)]. First, $(NH_4)_2TiF_6$ is hydrolyzed to form TiO₂ nanoparticles, HF and NH_4F [Eq. (1)]. Second, ZrO₂ fibers are gradually corroded away by the resulting HF and NH₄F and are transformed to water-soluble $(NH_4)_2ZrF_6$ [Eq. (2)].

$$(NH_4)_2 TiF_6 + 2H_2O \rightarrow TiO_2 + 2NH_4F + 4HF$$
(1)

$$ZrO_2 + 4HF + 2NH_4F \rightarrow (NH_4)_2ZrF_6 + 2H_2O$$
⁽²⁾

In this way, TiO₂ nanoparticles are deposited and grow on the surfaces of ZrO_2 fibers, whereas the ZrO_2 fibers are gradually corroded as the reaction time *t* increases. Figure 4 illustrates the schematic diagram of a plausible growth mechanism, along with the cross-sectional SEM images of TiO₂ tubular structures obtained after hydrothermal processing at 200 °C at various reaction times *t*. At *t*=1 h (Figure 4b), a dense layer of TiO₂ nanocrystals are randomly deposited on the smooth surfaces of ZrO_2 fibers. At *t*=6 h (Figure 4c), the TiO₂ layer grows thicker and the ZrO_2 tem-

www.chemeurj.org

Figure 4. Schematic diagrams (left) illustrating the growth mechanism, which are consistent with the SEM images of TiO₂ microtubes obtained in a $(NH_4)_2$ TiF₆ solution at 200 °C for a) t=0 h, b) t=1 h, c) t=6 h, and d) t=24 h.

plates begin to corrode (Figure 4c). When t reaches 24 h (Figure 4d), the ZrO_2 templates are completely corroded away and only a TiO_2 tubular structure remains. Our analysis suggests that by controlling the morphologies and sizes of ZrO_2 templates a variety of anatase TiO_2 tubular or hollow spherical materials consisting of microcrystallites with high percentage of {001} facets can be obtained.

In summary, we have developed a simple one-step hydrothermal template process for preparing TiO_2 tubular materials made up of microcrystallites with a high percentage of reactive {001} facets, and have formulated a plausible growth mechanism for this process. The modification of the morphologies and sizes of ZrO_2 templates can lead to various anatase TiO_2 tubular or spherical materials made up of microcrystallites with a high percentage of {001} facets, which can be of potential use in many fields.

www.chemeurj.org

Experimental Section

For the fabrication of anatase TiO₂ tubular structures composed of microcrystallites, tetragonal ZrO₂ polycrystalline fibers (5–10 µm in diameter and longer than \approx 50 mm) were employed as a template in our experiments (as shown in Figure 1a). The fibers were pretreated by dipping them in dilute HNO₃ solution for about 12 h. Then they were filtered, rinsed with distilled water and ethanol three times, and dried at 80 °C for 12 h in air prior to use. 1.23 g of pretreated ZrO₂ fibers was immersed in 40 mL aqueous solutions containing (NH₄)₂TiF₆ (2.97 g, 0.015 mol). The mixture was then transferred into 60 mL Teflon-lined stainless-steel autoclaves and maintained at 200 °C for 24 h. After the reaction, the products were filtered, rinsed with distilled water and ethanol several times, and dried in an oven at 80 °C.

The XRD patterns were taken on a Bruker AXS D8 advance powder diffractometer with a Cu_{Ka} X-ray tube, using filtered Cu_{Ka} radiation over a 2θ range from 15 to 80° with a step size of 0.02° and a counting time of 0.1 sstep⁻¹. The EDS was taken on a HORIBA EMAX Energy EX-350 energy dispersive X-ray microanalyzer. The morphologies and structure were observed by SEM (Hitachi S-4800 microscopy) and HRTEM (JEOL JEM-2100).

Acknowledgements

This work was financially supported by the National Basic Research Program of China (973 Program, Grant 2007CB613302), the National Natural Science Foundation of China under Grants (Nos. 20973102, 50721002, and 10774091), the Program of Introducing Talents of Discipline to Universities in China (111 Program), and China Postdoctoral Science Foundation funded project (20090461200). M.-H.W. is thankful for the support by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259.

Keywords: anatase • hydrothermal synthesis • titanium • tubular structures • zirconium

- [1] S. Iijima, *Nature* **1991**, *354*, 56–58.
- [2] W. P. Hoffman, H. T. Phan, P. G. Wapner, *Mater. Res. Innovations* 1998, 2, 87–96.
- [3] D. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem. 2001, 113, 1016–1041; Angew. Chem. Int. Ed. 2001, 40, 988–1011.
- [4] P. Wang, B. B. Huang, J. Y. Wei, X. Y. Qin, S. S. Yao, Q. Zhang, *Mater. Lett.* 2007, 61, 5255–5257.
- [5] G. P. Celata, M. Cumo, S. McPhail, G. Zummo, *Heat Fluid Flow* 2006, 27, 135–143.
- [6] J. P. Cheng, Y. J. Zhang and R. Y. Guo, J. Cryst. Growth 2008, 310, 57-61.
- [7] G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, *Lab. Chip* **2009**, *9*, 263–268.
- [8] C. Rosenfeld, C. Serra, C, Brochon, G. Hadziioannou, *Chem. Eng. Sci.* 2007, 62, 5245–5250.
- [9] R. Li, X. Y. Xiao, A. W. Czarnik, *Tetrahedron Lett.* 1998, 39, 8581– 8584.
- [10] E. Kaneko, J. Isoe, T. Iwabuchi, S. Hoshi, K. Akatsuka, T. Yotsuyanagi, Analyst 2002, 127, 219–222.
- [11] J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, D. L. Kwong, *Appl. Phys. A* 2007, 88, 611–615.
- [12] Y. P. Rakovich, S. Balakrishnan, J. F. Donegan, T. S. Perova, R. A. Moore, Y. K. Gun'ko, *Adv. Funct. Mater.* **2007**, *17*, 1106–1114.
- [13] J. J. Schneider, J. Engstler, S. Franzka, K. Hofmann, B. Albert, J. Ensling, P. Gütlich, P. Hildebrandt, S. Döpner, W. Pfleging, B. Günther, G. Müller, *Chem. Eur. J.* 2001, 7, 2888–2895.
- [14] J. Q. Hu, Y. Bando, F. F. Xu, Y. B. Li, J. H. Zhan, J. Y. Xu, D. Golberg, Adv. Mater. 2004, 16, 153–156.

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2010, 16, 7106-7109

7108 -

COMMUNICATION

- [15] N. Shi, G. Yin, H. B. Li, M. Han, Z. Xu, New J. Chem. 2008, 32, 2011–2015.
- [16] Z. J. Liang, A. S. Susha, Chem. Eur. J. 2004, 10, 4910-4914.
- [17] Z. Y. Liu, L. J. Ci, N. Y. Jin-Phillipp, M. Rühle, J. Mater. Chem. 2007, 17, 4619–4625.
- [18] G. Zou, Z. Liu, D. Wang, C. Jiang, Y. Qian, Eur. J. Inorg. Chem. 2004, 4521–4524.
- [19] J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007, 3, 300– 304.
- [20] D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, Chem. Commun. 2009, 4381–4383.
- [21] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, *Nature* 2008, 453, 638–641.
- [22] H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 2009, 131, 4078–4083.
- [23] X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng, J. Am. Chem. Soc. 2009, 131, 3152–3153.
- [24] Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, M.-H. Whangbo, *Chem. Eur. J.* 2009, 15, 12576–12579.

Received: December 21, 2009 Published online: May 12, 2010